Showing posts with label Functions. Show all posts
Showing posts with label Functions. Show all posts

Monday, March 18, 2019

IEC TC 57 Just Published IEC 61850-10-3 on Functional Testing of IEC 61850 Based Systems

IEC TC 57 published 79 page document 57/2082/DC:

IEC TR 61850-10-3 – Communication networks and systems for power utility automation –
Part 10-3: Functional testing of IEC 61850 based systems

Excerpt:
The growing success of the IEC 61850 series calls for guidelines for testing of substations implementing this standard. This technical report aims at producing a practical guide for protection, automation and control (PAC) engineers on best practise for testing of IEC 61850 Edition 2 with Tissues/Ed. 2.1 based devices and systems.
Since the release of the first edition of the IEC 61850 standard in 2002-2005 thousands of substations have been built making use of the new multi-part standard. Most of those systems are more integrated and complex than the previously deployed, making use of multi-function capable IEDs and the rich feature set of IEC 61850. Especially the sending and receiving of protection trips via GOOSE messaging control commands/indications, monitoring and time synchronisation information over the same shared equipment or network will need to drive changes to existing test methods and practices as many of the traditional test boundaries have changed.
Despite the large number of commissioned IEC 61850 substations considerable uncertainty among end-users (system integrators and power utilities) regarding the correct testing procedures still exists. Devices implemented according to the first edition of the standard also utilized a limited part of the test related functionality in the standard. Much of the functionality included in IEC 61850 to allow efficient, functional oriented testing has been clarified and extended in the second edition of IEC 61850 parts, 6, 7-1 to 7-4, 8-1 and 9-2. Therefore, there is a need to help the industry by describing the methods and principles for testing the IEC 61850 based applications.
This Technical Report provides insight into the changing requirements and practice of testing following the introduction of IEC 61850 based devices and systems. One example is the disappearance of so-called ‘hardwired’ connections between substation automation devices.
These connections are replaced by communication networks and this means that traditional simulation and isolation of signals for the purpose of testing is no longer possible.

Comments to this draft are due by 2019-04-19

Monday, April 17, 2017

What is a Function in IEC 61850?

The term "Function" is used in a variety of flavors throughout the standard series IEC 61850. If you ask five experts, you may get six answers.
IEC TC 57 has proposed (57/1863/DC) to develop a new Technical report IEC 61850-6-100: "SCL Function Modelling for Substation Automation"
A "function" is more or less a synonym for operation or action ... as described in Wikipedia:
"A function model or functional model in systems engineering and software engineering is a structured representation of the functions (activities, actions, processes, operations) within the modeled system or subject area."
In my seminars I compare IEC 61850 with Logistics:



IEC 61850 defines simple and more and more complex functions. A schedule according to IEC 61850-90-10 defines a set of quite complex (or comprehensive) functions. In most cases the functions defined by IEC 61850 are just functional components that are used as bricks to build a comprehensive application function.
The brick-concept of IEEE 1550 (UCA 2.0) indicated the use of the standard models: the Bricks (which are now the Logical Nodes in IEC 61850).
IEC 61850-7-2 Services define functions (called services) that provide information logistics, e.g., for accessing the device information model, allow exchange of any value made available by a device based on events for real-time and non-real-time applications, or services for controlling a controllable item like a circuit breaker or a fan.
Functions may be composed using the standard IEC 61499 (Function blocks) as described in the following papers:
V. Vyatkin, G. Zhabelova, N. Higgins, K. Schwarz, and N.-K. C. Nair, Towards intelligent smart grid devices with IEC 61850 interoperability and IEC 61499 open control architecture, IEEE Conference on Transmission and Distribution, New Orleans, April, 2010
 N. Higgins, V. Vyatkin, N. Nair and K. Schwarz, “Intelligent Decentralised Power Distribution Automation with IEC 61850, IEC 61499 and Holonic Control“,IEEE Transactions on Systems, Machine and Cybernetics, Part C, 40(3), 2010,
J. Xu, C.-W.Yang, V. Vyatkin, S. Berber, Towards Implementation of IEC61850 GOOSE Messaging in IEC61499 Environment, IEEE Conference on Industrial Informatics (INDIN’13), Bochum, July 29-31, 2013
Click HERE for more papers.
More to come ... stay tuned to this blog!

Saturday, December 24, 2016

New: Modelling of Logics for IEC 61850 Based Applications

IEC TC 57 has published a very interesting proposal (57/1814/DC; 49 pages) for modelling logics:

IEC TR 61850-90-11, Communication networks and systems for power utility automation –
Part 90-11: Methodologies for modelling of logics for IEC 61850 based applications

Comments are expected by 2017-02-03

This part of IEC 61850 describes the methodologies for the modelling of logics for IEC 61850 based applications in power utility automation. In particular, it describes the functional view of logic based on existing logical nodes for generic process automation and the operational modes of the logic. Furthermore it includes the specification of the standard language to be applied to specific the logic as well as the related data exchange format between engineering tools and their application as well as the mapping of logic elements to IEC 61850 data types.

The IEC 61131-3 PLC programming language is used to describe syntax of functions.

Example PLD (Programmable Logic Description): The PLD file contains the logic unit program code in PLC OpenXML format, representing the description of the logic programmable scheme that can then be mapped to a GAPC LN instance. Excerpt:



... more to come next year.

Saturday, September 10, 2016

New Part IEC 61850-90-20 proposed - Guideline to Redundancy Systems

IEC TC 57 has proposed a new part for IEC 61850 (57/1766/DC):

Proposal to develop IEC TR 61850-90-20: Communication networks and systems for power utility automation – Part 90-20: Guideline to redundancy systems

As more application domains are added to the IEC 61850, additional modelling, description and functional capabilities need to be added to the “core” of IEC 61850.
One of the missing capabilities is functional redundancy, required by e.g. HVDC, FACTS and industrial applications. Other redundancy systems might also need additions to the standard for correct modelling.
This should be investigated in this work.

It is intended to write a Technical Report.

Tuesday, July 30, 2013

Multiagent Automation based on IEC 61850 and IEC 61499

G. Zhabelova and V. Vyatkin know for their interest in combining IEC 61850 with IEC 61499 have published an interesting paper on

"Multiagent Smart Grid Automation Architecture Based on IEC 61850/61499 Intelligent Logical Nodes"

in Industrial Electronics, IEEE Transactions on, vol. 59, pp. 2351-2362, 2012.

Abstract— Universal, intelligent and multifunctional devices controlling power distribution and measurement will become the enabling technology of the Smart Grid ICT. In this paper we report on a novel automation architecture which supports distributed multi-agent intelligence, interoperability and configurability, and enables efficient simulation of distributed automation systems. The solution is based on the combination of IEC 61850 object-based modeling and interoperable communication with IEC 61499 function blocks executable specification. Using the developed simulation environment we demonstrate the possibility of multi-agent control to achieve self-healing grid through collaborative fault location and power restoration.

Click HERE to download the complete paper.

Monday, October 1, 2012

IEC 61850-5 Edition 2 FDIS Published for Ballot

IEC has published the FDIS for ballot until 2012-11-30:

57/1286/FDIS
Part 5 Ed2: Communication requirements for functions and device models

Extensions in Edition 2 of part 5:

  • requirements for communication between substation automation systems to utility automation systems;
  • including the interfaces for communication between substations (interfaces 2 and 11);
  • requirements from communication beyond the boundary of the substation

Note that part 5 does NOT DEFINE FUNCTIONS!! The scope states:

“The description of the functions is not used to standardize the functions, but to identify communication requirements between Intelligent Electronic Devices … Standardizing functions and their implementation is completely outside the scope of this standard.”

There are other parts of IEC 61850 that go beyond the issue of determining the communication requirements: e.g., part IEC 61850-90-7 defines behavior at the electrical coupling point of a PV inverter. Depending on the configuration (input) of the various settings of a specific model the electric output of the inverter has to follow the “FUNCTION” that is described in the Logical Node model!

See example of the frequency-watt mode control function.